Definition. Let $A \subset \mathbb{R}$, $A^c = \mathbb{R} \setminus A$ be its complement. A point $a \in \mathbb{R}$ is called

- (1) an interior point of A if for some $\varepsilon > 0$, $V_{\varepsilon}(a) \subset A$. Equivalently, $V_{\varepsilon}(a) \cap A^{c} = \emptyset$;
- (2) an exterior point of A if for some $\varepsilon > 0$, $V_{\varepsilon}(a) \subset A^{c}$. Equivalently, $V_{\varepsilon}(a) \cap A = \emptyset$;
- (3) a boundary point of A if it is neither interior nor exterior point of A. Equivalently, for all $\varepsilon > 0$, $V_{\varepsilon}(a) \cap A \neq \emptyset$ and $V_{\varepsilon}(a) \cap A^{c} \neq \emptyset$.

The set of all interior points of A is denoted by Int A (interior of A), the set of all exterior points of A is denoted by Ext A (exterior of A), and the set of all boundary points of A is denoted by Bd A (boundary of A).

- **Remark.** (1) For any $A \subset \mathbb{R}$, $\mathbb{R} = \text{Int } A \bigcup \text{Bd } A \bigcup \text{Ext } A$, and no two of these three sets have a non-empty intersection.
 - (2) It immediately follows from the definitions that $Int A = Ext A^c$.
 - (3) By the symetry of the definition of the boundary points, $\operatorname{Bd} A = \operatorname{Bd} A^c$.
 - (4) A is open if and only if any point of A is interior, i.e. A = Int A.
 - (5) If a is an isolated point of A or A^c then $a \in \operatorname{Bd} A$.

Theorem. Int A and Ext A are open sets. If U is open, $U \subset A$, then $U \subset Int A$.

Proof. Let us first establish the second statement. If U is open and $a \in U$ then $\exists \varepsilon > 0$ for which $V_{\varepsilon}(a) \subset U \subset A$. So a is an interior point of A, $a \in \text{Int } A$. Thus $U \subset \text{Int } A$.

Now let $a \in \text{Int } A$. Then $\exists \varepsilon > 0$ such that $V_{\varepsilon}(a) \subset A$. But $V_{\varepsilon}(a)$ is open and contained in A, so, by what we just proved, $V_{\varepsilon}(a) \subset \text{Int } A$. So every point of Int A is an interior point, and so Int A is open.

Since $\operatorname{Ext} A = \operatorname{Int} A^c$, it is also open.

Theorem. $A \subset \mathbb{R}$ is closed if and only if $\operatorname{Bd} A \subset A$, i. e. if and only if it contains all of its boundary points.

Proof. Assume that A is closed and $a \in BdA$. If $a \notin A$, then, since $V_{\varepsilon}(a) \bigcup A \neq \emptyset$ for any $\varepsilon > 0$, we have

$$(V_{\varepsilon}(a) \setminus \{a\}) \bigcup A \neq \emptyset,$$

so a is a limit point of A. Since A is closed, $a \in A$ – contradiction! Thus $\operatorname{Bd} A \subset A$.

Assume now that $\operatorname{Bd} A \subset A$ and a is a limit point of A. If $a \notin A$, then

 $\forall \varepsilon > 0 : V_{\varepsilon}(a) \bigcup A \neq \emptyset \text{ since } a \text{ is a limit point of } A; \ V_{\varepsilon}(a) \bigcup A^{c} \neq \emptyset \text{ since } a \in A^{c}.$

Thus a is a boundary point of A, so $a \in A$ – contradiction! Thus A contains all of its limit points, so it is closed.

Theorem. A is open if and only if A^c is closed.

Proof. A is open if and only if A is equal to Int A. This happens if and only if $\operatorname{Bd} Z = \operatorname{Bd} A^c \subset A^c$, i. .e when A^c is closed.

Corollary. Bd $A = \mathbb{R} \setminus (\text{Int } A \bigcup \text{Ext } A)$ and $A \bigcup \text{Bd } A = \mathbb{R} \setminus \text{Ext } A$ are closed, as the complements of open sets.

Definition. The *closure* of A is the set A together with all of its boundary points:

 $\overline{A} = A \bigcup \operatorname{Bd} A$

Remark. A set A is closed if and only if it contains all of its boundary points. Since any set contains all of its interior points, A is closed if and only if $A = \overline{A}$.

Lemma. Let F be closed, $A \subset F$. Then $\overline{A} \subset F$.

Proof.

$$A \subset F \implies \operatorname{Ext} F \subset \operatorname{Ext} A \implies F = \overline{F} = (\mathbb{R} \setminus \operatorname{Ext} F) \supset (\mathbb{R} \setminus \operatorname{Ext} A) = \overline{A}$$

Lemma (Alternative characterizations of closure). (1) $a \in \overline{A}$ if and only if

$$a = \lim_{n \to \infty} a_n$$
 with $a_n \in A$.

(2) Let

$$dist(a, A) := inf\{|x - a| : x \in A\}$$

Then $a \in \overline{A}$ if and only if dist(a, A) = 0.

(3) Let L(A) denote the set of all limit points of A. Then $\overline{A} = A \bigcup L(A)$.